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Abstract
The electronic structures of the molecules nitroamine and
nitrosamine have been investigated by using ab initio molecular
orbital methods. Double-zeta basis sets have been used. Both planar
and non-planar geometries have been considered and complete geometry

optimizations have been performed. The results obtained are compared

with previous semi-empirical ynd ab initio studies.




1. Introduction

Nitramine and nifrosa-ino compounds are of significant interest (Feuer
ot 2l1.1969) due to their extensive use as essential ingredients in
propellants and primary and secondary explosives. X-ray crystallographic
studies of these compounds in conjunction with microwave and electron
diffraction studies indicate that these molecules exhibit a number of
interesting geometrical features. For nitramine, apart from the study by
Beevers ot al. (1957) the most exhaustive study is that of Tyler (1963)
vhere the non-planarity of nitramine is shown by the direct observation of the NH;
invereion. Howovot; there continue to be different (Gropen and Skancke 1971,
Cimiraglia 1978) studies on the contrsry, and the fact that
dimethyl-nitramine is planar (Stolevik and Rademacher 1967) illustrates
the necessity of further theoretical and experimental work for the
accurate determination of the electronic structures.

The aim of the present work is, therefore, to study the optimized
geometries of nitramine and nitrosamine in both planar and non-planar
form, at the Hartree-Fock level. The non-planar form of nitramine will
be taken from the study of Tyler and the planar forms of both the
molecules will be taken from the study of Gropen et al (1971). Our
results will be compared with a number of semi-empirical studies

(Farminer and Webb 1975, Harris 1973, White, Colton, Lee and Rabalais

1975).




2. Details of Calculations

As 1is well known, the ab initio molecular-orbital iethod predicts
geometries with surprising accuracy, in spite of the neglect of
correlation energy. However, there appears to be only two ab initio
studies in the literature for these molecules. The study by Gropen
et al. (1971) considered only planar geometry and no geometry
optimization was performed. The study by Duke (1978) used minimum
basis sets and only partial geometry optimization was performed. The
NO2 and NH; geometries were kept fixed: only the N-N distance and the
out-of-plane angle of the NH) group were varied.

To improve these results, we have used a double-zeta basis set,
namely the 3-21G basis set (Binkley, Pople and Hehre 1980). This basis
consists of an s~type inner shell function with 3 Gaussians, an inner
set of valence s~ and p- type functions with 2 Gaussians and another
outer sp set with 1 Gaussian. This basis should give reasonable bond
angles and bond lengths, which are known to be overestimated in a
minimal basis-set study. Geometry optimization was performed by using
the method of Schlegel (1982). This optimization algorithm evaluates
and utilizes the gradients each time the energy is computed and the

second derivative matrix is updated. This is followed by a one-

dimensional search using the second derivative matrix.




3. Results and Discussion

The .results obtained are presented in Tables 1 - 12,

In Tables 1 and 2, the non-planar experimental geometries of
nitramine and the optimized geometry at the Hartree-Fock 3-21G level
are presented. The N-N distance obtained, 1.472 A, is, not sur-
prisingly, too large. This is to be compared with the N-N distance,
1.354 A, obtained at planar geometry. Obviously, there is a strong
tendency to planarity at shorter N-N distances. MINDO predicts
nitramine to be a planar molecule, MINDO2 gives 1.21 A for N-N
distance, vhile MINDO3 gives 1.29 A.

In tables 3 and 5, we present the calculated orbital energies for
nitramine in non-planar and planar forms. The nature of each orbital
is indicated in terms of w-bonds and more or less localized ¢ bonds.
The four lowest occupied orbitals are the inner shell s-~orbitals on the
four heavy atoms. This feature is also supported by the MINDO2 and
MINDO3 orbital energies. The photoelectron spectrum of nitramine
indicates that the two highest occupied levels are of » symmetry. Our
calculations indicate that while this is true for planar nitramine, in
non-planar nitramine, only the highest occupied level is of ¥ symmetry.
Also, in the study by Gropen et al., one lone pair is found between the
two ¢ (N-H) orbitals and the lowest % orbital was found to be almost
degenerate with the highest of these. We do not observe such

degeneracy and thus it seems unlikely that the lowest » orbital is

almost completely delocalized as has been claimed in the literature.




In Tables 6 and 7, the optimized planar geometry and the orbital
energies for nitrosamine are presented. Here the three lowest orbitals
are the inner shell s-orbitals on the three heavy atoms. A study of
population analysis indicate complete agreement with the conclusions
reached by Gropen et al.: the three highest occupied ¢ orbitals are
responsible for the lone pairs on nitrogen and oxygen. Also, the two
lovest, Sa' and 4a', are mainly responsible for the ¢ (N-0) and ¢ (N-N)
bonds.

Table 8 contains the results of the total energies, before and
after optimization. Since nitramine in planar form has clearly lower
energy than nitramine in non-planar form and since experimental study
by Tyler (1963) indicate results on the contrary, further experimental
research in this direction could be very fruitful.

Table 9, 10, and 11 present the results of gross atomic population
study. In the non-planar form, the nitro nitrogen atom is positively
charged, namely +0.51 while the amine nitrogen atom is negatively
charged, namely -0.51. This is from Mulliken population analysis.
Results from Lowdin population analysis indicate that the nitro
nitrogen atom is positively charged, +0.46 but the amine nitrogen is
strongly negatively charged, namely -0.71. The same qualitative trends
are predicted from the CNDO charges which are in reasonable agreement
with the INDO charges reported by White (1975). It is interesting to
note that for nitramine in planar form, the conclusions are completely
opposite. We note as a sideline that MINDO methods do not work very

well in the study of the population charges of these molecules,

probably because these molecules are very different from those used in




the parameterisation of such methods. It is also to be remembered that
the predicted populations in any ab initio valculation are very
sensitive to the choice of basis set.

Finally in Table 12, we compare our results for the dipole moment
of nitramine with the available results in the literature. In the
non-planar form, our value for the dipole moment is the closest to the
experimental value. However, since total energy is considered more
reliable in ab initio method, nitramine in planar form still appears to

be more stable theoretically. Again, further experimental work would

be very welcome.
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TABLE 1

Experimental bond lengths and bond angles for nitramine (lengths in.nm)

Beevers and Tyler (1963)
Trotman-Dickinson (1957)

X-ray Microwave
N-H ‘ 0.1005 ¢+ 0.001
N-H 0.140 0.1427 ¢ 0.0002
N-0 0.118 0.1206 (assumed)
ONO 130°8' ¢ 15'
HNH 115°11' ¢ 2°
out of plane 51°47' ¢ 1°
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TABLE 2

Optimized Non-planar Geometry of Nitrsmine Coordinates are in Angstgoms.

Aton‘ x y z
N(1) 0.0145 -0.0021 0.0
N(2) 1.4845 0.0754 0.0
0(1) -0.5963 _ 1.0803 0.0
0(2) ~0.4676 -1.1209 0.0
a(1) 1.7172 0.6055 0.8295

H(2) ~1.7172 0.6055 -0.8295
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TABLE 3

Orbital energies for nitroamine in a. u.

11

Orbital Orbital energy Nature of Orbital
1 (la") -20.531190 ls
2 (2aY) -20.511603 ls
3 (3a') -15.810688 1s
4 (4a') -15.574496 ls
5 (5a') - 1.631171 o
6 (6a') - 1.424051 0
7 (7a') - 1.261226 ¢
8 (8a') - 0.905639 o
9 (la'') - 0.786352 x
10 (9a') - 0.775029 (]
11 (10a') - 0.723289 ¢
12 (.Za") - 0.665820 L]
13 (l1la') - 0.538030 o
14 (12a') - 0.499191 0
15 (13a') - 0.467081 g
16 (3a'') - 0.443007 n




TABLE A

12

Initial and Optimized Planar Geometries of Nitramine Coordinates are in

Angstroms.

Atom Xin Yin xopt yopt

N(1) 0.0 0.0 0.0 -0.0065
N(2) 0.0 1.3816 0.0 1.3476
0(1) 1.0926 1.8911 1.1170 1.9019
0(2) -1.0926 1.8911 -1.1170 1.9019
H(1) 0.8474 -0.5398 0.8937 -0.4426
H(2) -0.8474 -0.5398 -0.8937 -0.4426
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TABLE 5

Optimized Orbital Energies for nitramine in planar form in a.u.

13

Orbit.al Orbital energy Nature of Orbital
1 (la') =20.495737 ls
2 (2a') ~20.495366 ls
3 (3a") -15.814295 ls
4 (4a') -15.580724 ls
5 (5a') - 1.617184 o
6 (6a') - 1.401714 0
7 (7a') - 1.282449 o
8 (8a') - 0.924754 o
9 (9a') - 0.799121 0
10 (10a') - 0.769095 L
11 (1la'") - 0.746520 L]
12 (11a') - 0.671962 0
13 (12a') - 0.497412 0
14 (13a') - 0.482884 0
15 (2a'') - 0.472506 L]
16 (3a'’) - 0.437638 "
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TABLE 6

Initial and Optimized Planar Geometries of Nitrosamine.

14

Coordinateg are in

Angstroms.
Atom Xin Yin xopt yopt
N(1) 0.0 0.0 0.0060 -0.0062
N(2) 0.0 1.3436 -0.0164 1.3413
0(1) 1.0926 1.8531 1.1001 1.8513
(1) 0.8474 -0.5398 0.889%6 =0.4737
H(2) -0.8474 -0.5398 -0.8690 =0.4746




TABLE 7
Optimized Orbital Energies for nitrosamine in a. u.

orbital Orbital Energy Nature of Orbital
1 (la') ~ -20.489050 ls
2 (2a") ~15.659971 1s
3 (3a') -15.546273 1s
4 (4a') - 1.523223 ' ¢
5 (5a') - 1.248262 o
6 (6a") - 0.915149 o
1 (7a') - 0.770635 ¢
8 (8a") - 0.696589 o
9 (la'") - 0.623923 "
10 (9a') - 0.586597 o
11 (2a'") - 0.424889 .
12 (10s") - 0.414389 0




TABLE 8

Total electronic energies. Values in a. u.

16

Hﬁloculo Ceometry Total Energy
Nitramine Non-Planar (Expt.) -258.004191
Non-Planar (Opt.) -258.118307

Nitramsine Planar (Theo.) ~258.128685
Planar (Opt.) -258.137938

Nitrosamine Planar (Theo.) -183.764893
Planar (Opt.) ~183.768075
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TABLE 9

Gross atomic population for nitramine in non-planar geometry.

'Ato- Total Charge Total Charge
(Mulliken) (Lowdin)
N(1) 6.49297 6.54222
N(2) 7.51055‘ 7.29311
0(1) 8.39306 8.33289
0(2) 8.33329 8.24663
H(1) 0.63507 0.79258

H(2) 0.63507 0.79258




TABLE 10

Gross atomic population for nitrsmine in planar geometry.

'Aton Total Charge Total Charge
(Mulliken) (Lowdin)
N(1) 7.55396 7.29915
N(2) 6.452A2 6.48963
0(1) 8.40378 8.34106
0(2) ~ 8.40378 8.34106
H(1) 0.59033 0.76455
H(2) 0.59033 0.76455




TABLE 11

Gross stomic population for nitrosamine in planar geometry.

.AtOI Total Charge Total Charge
| (Mulliken) (Lowdin)
N(1) ’ 1.62222 7.31078
N(2) 6.71360 6.81728
0(1) 8.41915 8.29476
K(1) 0.62775 0.79472

H(2) 0.61729 0.78245




TABLE 12

Comparison of dipole moments of nitramine.

20

Method Nitramine
CNDO (Duke 1978) 4.44
MINDO3 (Duke 1978) 3.95
INDO (Whitman and Hornback 4.12

196;)

Ab initio (Gropen et al. 1971) 4.42
Ab. initio (Duke 1978) 3.75
This work

(non-planar) 3.62
This work

(planar) 4.66
Exp. 3.57
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ABSTRACT

The recent availability of artificial intelligence
programs and Lisp machines brings a completely new class
of computing tools to the physicist. In this paper we
try to provide a pedagogical introduction to this not .o
common class of computing by demonstrating some of the
general applications of these programs, by showing one

of its applications in solid state physics research, and

by suggesting other research and classroom applications.




I. INTRODUCTION

During the past decade the use of digital computers has be-
cdme an integral part of research in solid state physics. In
most cases the uses of computers have been primarily either for
numerical calculations or for control, data acquisition, and
data analysis in experiments, In this paper we try to point
out a different type of use, namely for algebraic (or symbolic)
manipulation. This type of computer programﬁing is part of a
larger field which is knoun as artificial intelligence and is
expected to make a very large impacf in the next generation of
computers. '

Although a munber of researchers in physics have used
computers for algebraic programming, it is still an unfamiliar
topic to a large fraction of physics faculty and students.

Thus in the first part of this paper we take a pedagogical
approach and introduce the use of algebraic programming via
examples. In subsequent parts we present its application to a
particular problem in solid state physics, néme]y the formu-
lation of band structure calculations based upon the linear
combination of atomic orbitals (LCAQ) method. The examples
presented 1q the rest of the paper are based on the “"computer

1

language" REDUCE.  The easy availability of this language

2

over the more powerful ones, 1ike MACSYMA,” was the reason for

this choice.




I1. ALGEBRAIC PROGRAMMING

' The primary purpose of algebraic manipulation programs is
to process formal mathematical expressions, without any particular
concern for their numerical values. Basically these expressions
are processed in a fashion similar to the one used in an algebra
or calculus class. Since almost all of the readers of this paper
are familiar with numerical programming using computer languages
1ike BASIC or FORTRAN, we think it is most instructive to present
an example comparing the algebraic- prograrming method with the

numerical programming method.

Example I
Let us consider the expression
(2 - ¥2) 7 (x+). (1)
If we write a FORTRAN program as

Z = (X**2 - Y**2) / (X+Y) (2)
PRINT (5,*) Z (3)
END (4)

and execute it, the result will be completely meaningless and
some compilers will warn that the X and Y variables are "un-
defined." Ruﬁning a similar program from a BASIC interpreter will

produce a similar error message. If we run a program in REDUCE as

Z: = (X**2 - ¥Y**2) / (X+Y); (5)




_the result will be (X - Y).

The main difference between the two types of programming is
11lustrated in the above example. In the numerical programming
method, one must assign a numerical value to each variable before
an expression containing it is evaluated, whereas in algebraic
programming one obtains an answer which is true for all differeht
.values of the variables. Since in solid state physics problems,
as well as in a number of otﬁér branches of science, one needs to
translate a physical model into mathematical expressions before
starting numerical programming, in most of these cases the
algebraic programming method could be used to obtain those ex-
pressions. In table I we have presented a few examples using
REDUCE. On one 1ine the operation is defined, followed by a semi-
colon. On the lines after the semicolon the results from the
execution of REDUCE are printed. -Examples of differentiation
and integration are given. The statements starting with ON or
OFF are control directives to the REDUCE program and may be
ignored during the reading of this paper without loss of under-
standing. The computer used for these examples was a DEC 2060
running with the TOPS-20 operating system, but these examples

can be run in any implementation of REDUCE yielding the same

results.

S e e —




ITl. LCAO BANDSTRUCTURE

In this section, as a specific application, we present the
use of REDUCE in obtafning the expressions for the 1inear com-
bination of atomic orbitals (LCAO) Hamiltonian matrix elements
for electrons in a crystal, An introduction to the band theory
in general and the LCAQ netho& in particular can be obtained

from many solid state physics texts.3

4

Also, the original paper

5

by Slater and Koster, and a review article by Nussbaum,™ con-

tatn a comprehensive discussion of the theory involved. In
1ight of this, a detailed introduction will be omitted here.

This method has been a very effective starting point for the

6 7 8

study of defects, surfaces,” the electron-phonon interaction,

and Fermi-surface properties.9
In the LCAO formulation of the band structure problem, one
expresses the conduction electron wave function wni(?) as a

1inear combination of atomic orbitals (hence the name LCAO):

[4

-l tC ei

oRm ->
mmj jn ¢jm(r) (6)

R

where ’Jm(?) is the atomic orbital centered at site m and the
summation J runs over all the atomic orbitals considered, e.g.
orbitals of Bymmetry S, X, ¥, Xy, yz, etc. The energy levels

and waye functions for the electrons are obtained by diagonal-

izing the matrix Hij’ where




Hi,j = ']N' L Cit.(m.-%)<’1'o |H|’jm> (7)

_.
and H 1s the Hamiltonian., The above expression for Hij' after
a commonly-used approximation called the two center approxi-

4,5

mation can be written as

a ik-R

Hig PEy (R.) (8)

L e
p(netghbors)

where ﬁb represents the lattice sites and Eyy is a unique
function of i, j, and ﬁﬁ. The functional dependence of E1J on
Rh can be further subdivided into radial and angular parts,

The EiJ expressions for a few different values of i and j are:

Eex = 2(spao) (9)
£, , = /2(s%a?)(sdo) (10)
S,x“-y
E 2 5= n?(2Pm?)2)(pda) - T mnl(pan)  (11)
X,32"-r

where 2, m, and n are the direction cosines of'ﬁ;, representing
the angular part, and (sso), (ppn), etc. are two-centered bond
parameters, representing the radial part. A complete list of
the functions is given in references 4 and 5. A general
procedure, which can also be implemented using REDUCE, is

given by Sharma.10

In evaluating HiJ’ the contribution from the radial part

is usually determined from numerical calculations or from a




parametric fit, and that from the angular part is obtained by
analytically sumaing over the ﬁﬁ. As an example, we will con-
sider the contribution to st for the nearest ne}ghbors in a
body-centered cubic (bcc) lattice. The number of nearest
neighbors in this case is eight and their coordinates and

(2 m n) values are 1isted in Table II. Substituting these
values of (£ m n) and the form of E,, from equation 9 into

eqation 8, one gets
H, = 21 sin(k a)(spa) , (12)

where a 1s the lattice constant. This expréssion 1s the
contribution of the nearest neighbors in a bcc lattice to st.
Although the contributions from other matrix elements, and for
different lattices can he obtained in an identical fashion, the
process is extremely tedious, error-prone, and time consuming,
Table III contains a program in REDUCE which evaluates the sum
over R » given the ﬁb vectors, Readers interested in getting a
feel for the advantage of using this program may try evaluating
one of the d-d matrix elements, or may look in Ref, 4 or 5 at "
the complicated results for s, p, and d orbital symmetries,
Readers not familiar with the programming language REDUCE should
only be concerned with the remarkable brevity of a program

which yields the complicated LCAO expressions for arbitrary

angular momentum orbital basis functions.




IV. OTHER APPLICATIONS

Artificial intelligence programming has countless appli-
cgtionx. These applications include complicated integrations,
differentiations, 1intt evaluations, summations, and application
.of recursion relations to give analytic expressions., These
programs are very efficient in performing the more tedious
kinds of operations in which humans have a high rate of error.

Since most students in pﬁysics as well as the other sciences
are acquainted with personal computers and mainframe computers,
and use them in both graduate and undergraduate studies, an
introduction to artificial intelligence progrimming at an early
stage in the student's career is now appropriate. This can be
done in many physiés classes, but certainly in courses in
mathematical methods of physics at any level.

A few other examples of useful REDUCE programs are programs

which produce explicit eiprgssions for the following:

1) orthogonal po]ynomialg of arbitrary order

2) spherical harmonics of arbitrary 1 and m

3) spherical Bessel functions of arbitrary order

4) Clebsch-Gordon coefficients.

A comment on the last item is informative and illustrative of the
power of REQUCE. Many man-years of effort have been expended in
computing Clebsch-Gordon coefficients of high order. Numerical

calculations are difficult because of factorial functions of

large arguments. Extensive tables of the coefficients have been




published, both in prime number representation and decimal
representation. Using REDUCE we have written a simple program
which yery quickly gives an amalytic expression for or a nu-
serical -valuc of the coefficient for arbitrary angular momenta

without any of the computational difficulties encountered in

previous -ethods."




‘¥« CONCLUSION

We have demonstrated the utility of algebraic programming
by presenting a specific example of how it has been used in
sol1id state physics research.!? The advantages of this method
are threefold, First, the tedium of deriving many expressidns
using the same method is greatly reduced. Second, a great deal
of time can be saved by using the computer to do repetitive
dertvations. Finally, the chances of error in the derivations
and in transcription of the equations are minimized. The latter
is due to the fact that REDUCE has the capahility of writing
the results in FORTRAN,

With the recent stress on aritifical intelligence and fifth
generation computers, there is a growing need for more re-
searchers and students to become familiar with programming
languages 1ike REDUCE. Not only are they useful, they may soon
become a necessary part of any scientific researcher's tools,
Artificial intelligence may remove the bottleneck between the
conception of a solution to a problem and its execution, giving
the student and researcher more time to think and learn, as well
as the ability to attack problems of greater complexity.

We are convinced that in the future the use of artificial
intelligence programs will be just as important a part of training
for scientists as learning how to read a voltmeter or use a

microscope.
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Table II.

Table III.

Table Captions

Examples of the use of REDUCE for differentiation

and integration of selected functions.

Nearest-neighbor positions and direction cosines for
the BCC lattice. The nearest-neighbor distances have
been multiplied by 2/a, where a is the lattice con-

stant, and the direction cosines have been multiplied

byd3 .

A REDUCE program which was used for the evaluation

of Slater-Koster matrix elements.
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Table I

? The following are examples of differentiation:

""l'hcsyhtaxisbr(r,x,n), :
RN where function P is differentiated n times with respect
‘ to the variable x;

< DR( X3, X, 1);
. '2 . \
- 3*X

DF( X**N * SIN(X) , X, 2);
N 2 2 2

(X *#(2%COS(X)*X*N - SIN(X)*X + SIN(X)*N - SIN(X)*N))/x
DP( X**(X**x) , X , 3);

X ‘ -

(x + x) (2*X) 6 3 (2%x) 5 3 (2*x)

(x _ *(X *LOG(X) *X + 3#x *LOG(X) *X + 3*x *

4 3 (2*x) 4 2 (2*x) 3 3
LOG(X) *X + 3#x *LOG(X) *X + X *LOG(X) *X +

(2*X) 3 2 (2*x) 2 2 (2*x)
6*X *LOG(X) *X + 3*x *LOG(X) *X + 3*x *

2 (2*X) (2*x) X S
LOG(X) *X + 3*x *LOG(X)*X + X + 3*X *LOG(X) *

3 X ¢ 3 X 3 3 X 3
X + 9*K *LOG(X) *X + 9*X *LOG(X) *X + 12*%X *LOG(X) *

2 X 2 3 - X 2 2 X 2
X + 3*X *LOG(X) *X + 21*X *LOG(X) *X - 3*X *LOG(X) *

X 2 X X X
X + 9*X *LOG(X)*X + 6*X *LOG(X)*X + 6*X *X - I*X  +

. § 3 3 3 2 3 2 2
LOG(X) *X + 3*LOG(X) *X + 3*LOG(X) *X + 6*LOG(X) *X

3 2 2 3
+ LOG(X)*X + 9*LOG(X)*X - 4*LOG(X)*X + 3*X + 2))/X
DP( A*X * ASIN(X) , X , 2);

2 . 2 4 2
(SQRT(X = 1)*A*I*( - X + 2))/(X - 2%X + 1)

2 AT LT N TSR AT AT T T T o Tad Al Fad s

ol & WY I W)
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Table I (continued)

M‘l‘ The following are examp1es of integration
The syntax is INT( P, X ),
where P is the integrand and X is the variable of
integration.;

INT( 1/X , X);

LoG(X)

INT( X**P * LOG(X) , X);

P 2
(X *X*(LOG(X)*P + LOG(X) - 1))/(P + 2*P + 1)

INT( SIN LOG Q , Q);

(Q*( - cos(LOG(Q)) + SIN(LOG(Q))))/2

INT( A**X , X);
X
A /LOG(A)
INT( A**X * SIN X , X);
X 2
(A *(LOG(A)*SIN(X) - COS(X)))/(LOG(A) + 1)

INT( X * ATAN X , X):

2
. (ATAN(X)*X + ATAN(X) - X)/2




Table II

BCC Lattice

Nearest-neighbor position (x 2/a)
Y
1

X

1

z

1

Direction cosines (xJ3')

4 mon
11
% I I
1 -1
% IS
11 A
I
I
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Abstract

A detailed study of Liz, L13 and Lik clusters is reported at the
ab iuitio level. Fourteen different geometries of the clusters have been
considered. The most stable geometrical forms at the Hartree-Fock-

Configuration-Interaction level are found and compared with previously

published theoretical and experimental results.




I. Introduction

In recent years, there has been widespread interest in theoretical
inéostigation of metal clusters (Schaefer 1975). The understanding of the
properties of small clun@orl is of signal importance in many areas,
particularly dispersed metal catalysis. Lithium, as the simplest metal,
has been the subject of many of these studies (Stoll and Preuss 1972,
Marshall, Blint and Kunz 1976, Borisov 1976, Gerber and Schumacher 1978,
Hermann and Bagus 1978, Beckmann et al. 1979) primarily because simple
quantum chemical methods as well as sophisticated self-consistent-field
methods can be employed for evident reasons. As a result, a number of
results of different quality on different clusters is now available. For
exinple, ab initio Self-Consistent-Field (Davies and Del Conde 1976),
Configuration Interaction (Kress, Carberry and Kuczynski 1978), Coupled-
Electron-~Pair-Approximation (Meyer 1977) and Diatomics-In-Molecules
(Companion, Steible and Starshak 1968) studies of Li clusters have been
published but the obtained results are hardly in agreement with each other.
In this study and the studies to follow, we want to use one method only,
napely Hartree-Fock followed by full configuration interaction in the
entire spectrum of diatomic molecule to very large clusters. The ultimate
aim is to determine precisely what size and shape of the cluster which can
be used, to a reasonable approximation, to simulate the effects of the
infinite solid. This work concentrating on small Li,, Liy and Li, clusters
is the first one in a series of exhaustive study of metal clusters at the
Hartree-Fock-Configuration-Interaction level. It is hoped that such a

consistent study will help resolve the controversies surrounding the size,

shape and stability of small Li clusters.




1I. Geometry of Clusters

Clusters investigated in this work are taken from different studies
available in the literature and are shown in Fig. 1. Triangular,
equidistant and general L13 clusters are investigated. The parameters are
taken from a comparable CNDO/BW (Complete Neglect of Differential Overlap) r
study (Skala 1981) since it 1§ known that such parameterization is able to
give the quantities of primary interest, i.e. bond lengths, bond angles and A
binding energies to a fairly good accuracy (Boyd and Whitehead 1981). Of
course, it is expected that a HF followed by CI calculation will improve the
results of semiempirical studies considerably. Ten different structures of
Li, are taken into account: tetrahedral (tet), triangular (tri), square
(sq), linear equidistant (eq), linear consisting of two diatomic molecules
(mol), general linear (lin), oblong formed by two parallel diatomic molecules
(obl), T-shaped (T), rhombic formed by two diatomic molecules (rho) and

parallelopiped (para).
III. Computational Method
One of the primary considerations involved is determination of the

type of basis set to be used. Gaussian~type basis sets used in ab initio !

molecular orbital computations usually involve some compromise between

computational cost and accuracy. A considerable increase in computational
efficiency can be achieved if the exponents of the Gaussian primitives are
shared between different basis functions. At the split-valence level, this

is usually exploited bv sharing primitive exponents between s and p

functions for the valence functions. Accordingly, for lithium, we have




used hers the so-called 3-21 G basis set (Binkley, Pople and Hehre 1980).
This basis consists of s-type inner shell function with 3 Gaussians, an
inner set of valence s- and p-type functions with 2 Gaussians and another
ouéor sp set with 1 Gaussian.

Once the basis set has been decided upon, Hartree-Fock calculations
have been carried out followed by full CI involving all single and double
excitations. The use of the method of configuration interaction is crucial
since it is well known (Das 1567) that conventional Hartree-Fock methods do
not describe Lin syoﬁeln accurately. These CI calculations have been
performed within the framework of the Graphical Unitary Group Approach
(GUGA~CI) of Brooks and Schaefer (1979). It is to be noted that GUGA-CI
approach is computationally well tractable compared to conventional CI

methods.

IV. Results

The results of our calculations are presented in Tables 1 and 2. The
parameters are listed in Column 2 of Table 1. AE indicates the energy
separation between the lowest unoccupied molecular orbital and the highest

occupied molecular orbital and E is the total energy, i.e. the core

tot
repulsion energy plus the valence electron energy. Eb is the Binding
energy per atom given by

E = (NELi - ELiN)IN (1)
where N is the number of atoms in the cluster. Table 2 lists the first and
the second ionization potentials. The first ionization potential is
obtained from Koopman's theorem

I. P. = (2)

-Ehomo




and the second ionization potential was obtained from the orbital below the
highest occupied molecular orbital.

For Liz, the separation distance was taken to be the equilibrium
exéorinontnl separation. Our value for the first ionization potential 4.89
eV compares favorably with the experimental ionization potential 4.96 eV.
The difference could be attributed to the basis set. The CI was fairly
small, involving only 553 configurations, counting all single and double
excitations. —

For L13, the conclusions agree with the results of Skala (1981) and
Kendrick and Hillier (1977) at the Hartree-Fock level. This implies that
at this ab initio level, the most stable Li3 cluster has the form of a
non-equilateral triangle. The £0t11 energy of linear equidistant L13 is
found to be lower than that of the triangular L13. This agrees with the
results of Skala (1981) and Companion (1978) but in contrast to the results
of Kendrick et al. (1977).

The results of the binding energy calculations indicate also that
Li3i'° should be unstable. This contradicts the experimental results
of Wu (1976); however, other recent experimental works indicate that
clusters with odd number of atoms are less probable than those with even
number of atoms. The origin of this discrepancy could also be due to the
parametrization method inherent in the CNDO/BW approximation, as correctly
observed by Skala (1981).

The Li4 regults are probably the most exhaustive ab initio study on
this system. The CI in these cases were fairly large, typically 11000
configurations counting all single and double excitations. At the Hartree-

Fock-Configuration-Interaction level, the binding energy increases along

the following sequence of geometries: tetrahedral, oblong, triangular,




square, linear equidistant, molecular, T-shaped, rhombic and parallelopiped.
The CNDO/BW study of Skala (1981) with the same parameters foupd the
following sequence of geometries: tetrahedral, triangular, square,
eqdidiatant. molecular, linear, oblong, T-shaped, rhombic and
parallelopiped. Other works on Lia usually take into account only two or
three geometries and the most stable system is that of square form (Companion
1978). There is however no cqntradiction. since Liatho or Liapara
were not considered. The binding energy 2E . (Liz) - E ¢ (Liapara)
is found to be 0.495 eV, to be compared with the tesulﬁ 0.956 eV of Skala
(1981) and 0.668 eV of Companion (1978).

Finally, the result of the dipole moment calculations show that except
for Lisiso, L14m°1. LiaT and Liapara’ the dipole moment equals zero.
Since most stable Lin systems should have nonzero dipole moment, experi-

mental determination of dipole moments can help determine the cluster

geometries.,
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Table 1. The values of the geometrical parameters, the homo-lumo gaps AE,

the total energy Etot in a.u., the binding energy per atom Eb,in a.u.,

and the dipole moment in Debye.

Cluster R ’ AE Etot Eb D
Li, 2.672 0.1903 -14.7966 0.0168 0.0
Li, 2.96 0.0431 -22.1654 0.0070 0.0
Li,® 2.75 0.0938 -22.1696 0.0084 0.0
L131°° R=2.82 0.0674 -22.1735 0.0097 0.375

a=72.2°
Li tet 3.01 0.1213 -29.5773 0.0128 0.0
Li,tr 3.89 0.1218 -29.5874 0.0151 0.0
L, % 2.84 0.1223 -29.5890 0.0158 0.0
L1, 2.65 0.1609 -29.5921 0.0165 0.0
Li, "o 2.73 0.1601 -29.5937 0.0169 0.037
Li, 140 Re2.736  0.1617 ~29.5897 0.0159 0.0
r=2.631
Li,°% 3.23 0.1221 -29.5827 0.0142 0.0
Li,t 2.70 0.1489 ~29.6021 0.0190 4.72
Librh° 2.57 0.1716 -29.6048 0.0197 0.0
Li, Pere R =R,=3.05  0.1648 -29.6114 0.0214 0.045

a=50.4°




Table 2. Ionization potentials for Lin clusters

Cluster First lonization Second Ionization
Potential Potential

Li, 0.1799 2.4258
14,7 0.1237 0.3633

Li,* 0.1591 0.3357
11,12 0.1292 0.3619

Ly, ket 0.1127 0.2192
L1t 0.1435 0.2247

Li,% 0.1380 0.2305

11, 0.1688 0.2070

Li, ™! 0.1682 0.2051

Ly, tin 0.1695 0.2063
11,0 0.1388 0.2284

L1, 0.1501 0.2229
L1, 0.1600 0.2165 [

Lial’“‘ 0.1563 0.2184

-—







